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I. Introduction

We give a simple proof of the result in Pitt (1981) that positively
correlated normal random variables are associated. The proof is an adapta-
tion of the original proof of Slepian's inequality in Slepian (1962), and

extends to the case of elliptically contoured distributions.

II. Normal Random Vectors

Let X = (x]....,xn) be a mean zero n-dimensional normal random vector

with nxn covariance matrix ¢ = (oij)' By a smooth function we will mean a

C2 function h(x) which together with its first and second order derivatives

satisfy a O(IxIN) growth condition at =, for some finite N.

We set
() = Eh(X),

and we are interested in the manner that H(IZ) varies with £. Our main result

is

Proposition 1: Let r be another covariance matrix with Yii =044 and

§ Yi; s_cij.for all i and j. If h is a smooth function on R® and if

2
(1) TRy >0 for all i and j with v, < o045,
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Proof: By standard approximation arguments it suffices to show

3H(Z) >0
:Te SO e .
1] .

whenever I is nonsingular and azh/axiaxj > 0. Let ¢(x) =¢z(x) be the mean

4 zero normal density on R" with covariance matrix £. Then
1 2 ' : 2!
(3) aL = f 3 % ’ 9 = 3 ’ i f j~
%0 § ax %935 9X;8X;

See e.g. Plackett (1954). Using (3) and our assumptions on h which justify

two integrations by parts we have

-

oH(Z = 3
) _(‘Lao,-j - IR" h(x) M—laoi; dx

2
= f g_hiél_. ¢(X) dx

Rn axiBXj

L L R

> 0
which completes the proof.

By varying h, T and I we obtain other results.

Corollary 1. Let h(x],...,xn) = f(xl,...,xk)g(xkﬂ,....xn) where f and g are

bounded measurable increasing functions. Suppose also that

Y,” = 044 for all 1,

Y if]ii,jikork<i,j5n, | U

ij ~ %

ifl<ic<k<j<n




R(r) < H(z).

In particular, if o,

u_>_0for'|_<_‘if_k<j_<_n.

Ef(x],...,xk)Eg(xk+1,...,xn) 5_Ef(xl,...,xk)g(xk+];...,xn).

Proof: If f and g are smooth then h is smooth and

= .ai_ gg__ 5 y

9X, X+ - ax 20 forl<cicke<ajcnm
i i 3

In this case the result follows from (2). The general case follows by approxi-

mations as in Pitt (1981).

To state Slepian's inequality, we write PX(A) for the probability of the
event that X e A< R",

Corollary 2. (Slepian) If Yiq = %45 and Yij f-oij for all i and j then for

each A

Pr{max Xi <A} 5.Pz{max X; < ).

Proof: Again by standard arguments it suffices to show that H(I') < H(t) for

n

each product h(x) = 1 fi(xi) of bounded non-negative smooth decreasing function
1

fi(xi)‘ For 1 # j, each such product satisfies azh/axiaxj > 0, and the result

follows from Proposition 1.
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Remark: Several variants are possible. In particular, changing the sign of

XpseeeaXp in Corollary 1 gives the result of Jogdeo and Proschan (1981):

If 9i; <0forl1<i<k<j<n,and if f and g are increasing then

Ef(x],...,xk)g(xk+],...,xn) 5_Ef(x],...,xk)Eg(xk+],...,xn).

III. Elliptically Contoured Distributions

The previous results extend to elliptically contoured distributions. The

extension of Slepian's inequality to this case was given in Das Gupta, Eaton,

> 0lkin, Periman, Savage and Sobel (1972).
Let <x,y- denote the Euclidean inner product on R" and let I be a non-

singular positive definite matrix. A probability density on R" of the form

1

P (x) = 2] 7 plex,z o)

is called elliptically contoured. Here p(A) > 0 is defined on [0,«) and is

assumed to satisfy Im A"’lp(x)dk < =,
0

We write

A

) = [ o Blxpy () ax,

and with this notation we will show that Proposition 1 remains valid.
It will suffice to establish (2) under the technical condition that p(})

is a C2 function with compact support, and under this hypothesis we will show

that: ¢

2 T
(5) If 2°h/ax;axy > 0, then 3015 H(z) > 0.
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The proof is similar to the earlier one, but requires a substitute for
the equations (3). This is supplied by Proposition 2.

Fof A > 0 we set

A
Fir) jo ple) & .

Let
F = ]
- iop(c) d

6. (x) =(2/z|V* (F, - Flex,z o)),

and

Proposition 2. If h(x) is smooth and p(x) is C2 with compact support, then
2

6‘ 3 . = th

( 5;;3- fR" h(x)pz(x) dx JR" -5;;§;§—- Gz(x) dx.

Remarks: Since Gz > 0 this proves (5). Also, in the case that Py = ¢Z

is a normal density onc easily checks that GZ = ¢p» S0 (6) is a generalization

of (3).

Proof: Let s | = (6'9). We will use the matrix identities

) T
o) el UL T b
h |
2_ 15| = Mg i f

k=1

3°1j
no.
) 1. = _ ik, 42
%17 < x = -] o )%,
8

noo n
axz Vo - -Z(kZ] a'kxk)( ) ojlxt). P43,
= 2

R e




without further comment.

Calculating, we now have

ap s s n . n X
I __ij % ., -1 1k Jj
=0V p. - 2|Z] T p(<x, TN ] o x ] o7x,)
343 z k1 K

. . ap
= 171J - ( Z UIka) 2
J

Our assumptions on p justity integration by parts and we have

. ‘ )
3;:j JR" h(x)pg (x)dx ' JR" h(x)pg (xjdx + IR“ ax [( z o x, Jh(x)Ipy (x)dx

"

JR ( 2 o’kxk) -bfél—-pz(x)dx

— J oh(x) 2 E(ex,z7Ti0)ox

ZIZ|% Rn an Sxi

= I __hizl.gz(x)dx

R 9X:3X

The above calculations allow one extension which is perhaps worthwhile

making. Using (7) we can easily verify that
2
® g IR" h{x)p (x)dx = HRH Thix) g (x)ex.
i ax’
i

Combining (6} and (8) it is elementary to prove
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Proposition 3. Let I and I be positive definite matrices and set

A=zI-T = (aij)‘ Let I, =T + tA and let h(x) be a smooth function satisfying

t
(9) ()= ] e ), o
i,3=1 LR axiaxj -
Then

h(x)p_. (x)dx ,
P

is an increasing function of t, 0 < t < 1.

Proof: Assuming, as before, that p()) is a C2 function with compact support,

then (6) and (8) give

) =
2 IR" hxdpg (x)dx - IR" ()8 ()dx.

By (9) this is non-negative.
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